Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from Epigenetics & Chromatin and BioMed Central.

Open Access Research

Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby

Shunsuke Suzuki12*, Geoffrey Shaw1 and Marilyn B Renfree1

Author Affiliations

1 Department of Zoology, The University of Melbourne, Victoria, 3010, Australia

2 Epigenomics Division, Frontier Agriscience and Technology Center, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan

For all author emails, please log on.

Epigenetics & Chromatin 2013, 6:14  doi:10.1186/1756-8935-6-14

Published: 3 June 2013

Abstract

Background

Epigenetic reprogramming is essential to restore totipotency and to reset genomic imprints during mammalian germ cell development and gamete formation. The dynamic DNA methylation change at DMRs (differentially methylated regions) within imprinted domains and of retrotransposons is characteristic of this process. Both marsupials and eutherian mammals have genomic imprinting but these two subgroups have been evolving separately for up to 160 million years. Marsupials have a unique reproductive strategy and deliver tiny, altricial young that complete their development within their mother's pouch. Germ cell proliferation in the genital ridge continues after birth in the tammar wallaby (Macropus eugenii), and it is only after 25 days postpartum that female germ cells begin to enter meiosis and male germ cells begin to enter mitotic arrest. At least two marsupial imprinted loci (PEG10 and H19) also have DMRs. To investigate the evolution of epigenetic reprogramming in the marsupial germline, here we collected germ cells from male pouch young of the tammar wallaby and analysed the methylation status of PEG10 and H19 DMR, an LTR (long terminal repeat) and a non-LTR retrotransposons.

Results

Demethylation of the H19 DMR was almost completed by 14 days postpartum and de-novo methylation started from 34 days postpartum. These stages correspond to 14 days after the completion of primordial germ cell migration into genital ridge (demethylation) and 9 days after the first detection of mitotic arrest (re-methylation) in the male germ cells. Interestingly, the PEG10 DMR was already unmethylated at 7 days postpartum, suggesting that the timing of epigenetic reprogramming is not the same at all genomic loci. Retrotransposon methylation was not completely removed after the demethylation event in the germ cells, similar to the situation in the mouse.

Conclusions

Thus, despite the postnatal occurrence of epigenetic reprogramming and the persistence of genome-wide undermethylation for 20 days in the postnatal tammar, the relative timing and mechanism of germ cell reprogramming are conserved between marsupials and eutherians. We suggest that the basic mechanism of epigenetic reprogramming had already been established before the marsupial-eutherian split and has been faithfully maintained for at least 160 million years and may reflect the timing of the onset of mitotic arrest in the male germline.

Keywords:
Epigenetic reprogramming; Genomic imprinting; Marsupial germ cells; Germ cell methylation